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Vertical slender jets 

By JAMES F. GEER 

AND JOHN C. STRIKWERDA 

Department of Systems Science, S.U.N.Y. - Binghamton 

Institute for Computer Applications in Science and Engineering 

(Received 7 November 1979 and in revised form 10 March 1980) 

The shape of a vertical slender jet of fluid falling steadily under the force of gravity is 
studied. The problem is formulated as a nonlinear free boundary-value problem for 
the potential. Surface tension effects are neglected. The use of perturbation expansions 
results in a system of equations that can be solved by an efficient numerical procedure. 
Computations were made for jets issuing from orifices in various shapes including 
an ellipse, a rectangle, and an equilateral triangle. Computational results are pre- 
sented illustrating the propagation of discontinuities and the formation of thin sheets 
of fluid. 

1. Introduction 
We wish to study the steady, three-dimensional potential flow of a slender jet of 

fluid falling vertically in the presence of gravity. Our primary interest is to determine 
the shape of the free surface of the jet, given the cross-sectional shape and velocity 
profile of the jet a t  a particular height (e.g. at  an orifice from which the jet emanates). 
Surface tension and viscous effects are neglected. 

The two-dimensional version of this problem (e.g. a thin sheet of water falling from 
a long slit in a container) has been studied by several investigators (see Keller & Geer 
1973 and Geer & Keller 1979 and the references cited therein). In  two dimensions, a 
rather straightforward perturbation analysis, based upon the slenderness ratio of the 
stream, leads to a sequence of problems which can be solved by standard methods of 
analysis (e.g. the numerical integration of some nonlinear ordinary differential 
equations together with methods from complex variable theory). In three dimensions 
(e.g. a jet of water falling from an elliptical orifice) the problem is considerably more 
difficult to analyse. The mathematical formulation of the problem leads to a fully 
three-dimensional, nonlinear boundary value problem for Laplace’s equation, for 
which the boundary of the flow is also unknown. For the case of a slender jet, however, 
Tuck (1976) and Geer (1977u, b )  derived equations to describe the first approximation 
to the cross-sectional shape and velocities of the jet. The problem of determining the 
shape is thus reduced to solving a nonlinear two-dimensional problem in the cross- 
sectional plane of the jet. Both Tuck and Geer gave an exact solution to this problem, 
namely, a jet with an elliptical cross-sectional shape. (See also Green 1977 for a one- 
dimensional analysis of jets with elliptical cross-sections.) To date no other exact 
solutions have been found. 
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FIGURE 1 .  Sketch of a vertical slender jet, with an indication of the co-ordinate system. The locus 
of centroids of the cross-sections of the jet form a straight line (in the direction of gravity), which 
we choose to be the z axis. Then 7 ,  8 and z form the usual cylindrical co-ordinate system, 
where 8 is measured from any convenient plane through the z axis. The free surface of the jet is 
denoted by T = Y ( 8 ,  Z ;  e). 

The purpose of this work is to present the results of solving numerically the associ- 
ated nonlinear free boundary-value problem for jets issuing from orifices of several 
different shapes. The problem is formulated in Q 2 and then transformed into a form 
more suitable for numerical integration. In  Q 3, a numerical method, which we have 
used to integrate the problem outlined in Q 2, is briefly described. This method appears 
to be new and it may be useful in solving other nonlinear free boundary-value problems. 
In  particular, the authors are currently using this method to study the effects of 
surface tension on slender jets. 

In  Q 4, we present the different orifice shapes for which our calculations were made. 
These shapes include the ellipse (which was a check on our numerical scheme), an 
egg-shaped cross-section, a square, a rectangle, and an equilateral triangle. We 
discuss these results in Q 5. 

2. Formulation of the problem 
Let the velocity potential of the jet be denoted by CD = @(r, 0, z ;  E) and let the shape 

of the free surface of the jet be described by T = 9(0, z ;  6) (see figure 1). Here T ,  6 and z 
form the usual (non-dimensional) cylindrical co-ordinate system, with the positive z 
axis pointing vertically downward in the direction of gravity. The parameter E ,  the 
slenderness ratio of the jet, is the ratio of a typical radius of the jet to a typical length 
along the jet and is defined precisely by Geer ( 1 9 7 7 ~ ) .  The boundary conditions at  
the free surface are the kinematic condition of no flow through the surface and 
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Bernoulli’s equation with constant pressure. For small values of E ,  Geer (1 977 a) has 
shown that Q and 9’ are given by 

where # and 

with 

and 

= $ ( I +  z)Q + +b(r, e, X )  + 0(~3), 
9’ = s(e, z )  +o(€), 

S satisfy the conditions 

holding on r = S(8,z). Equation (2.3) follows from Laplace’s equation for the potential 
while equations (2.4) and (2.5) result from the substitution of the perturbation ex- 
pansions (2.1) and (2.2) in the boundary conditions. Thus, we see that # must satisfy 
the two-dimensional Poisson equation (2.3) in the cross-section of the jet, while 
equation (2.4) essentially prescribes the normal derivative of $ a t  the boundary of 
the cross-section. Equation (2.5) is the additional condition which is needed to deter- 
mine the free s d a c e .  

To find # and S, we transform the problem (2.3)-(2.5) into a form that is somewhat 
easier to deal with numerically. We first note that we can easily find a particular 
solution to (2.3) and consequently we write # in the form 

$4 = -B.(i+z)+ra+$, (2.6) 

where $ satisfies the homogeneous version of equation (2.3), i.e. Laplace’s equation. 
Both $ and S are presumed known at z = 0. We then introduce a new independent 
radial variable p, related to r by 

Thus, r is stretched in a non-uniform manner, but the unknown boundary r = S(8, z )  
is mapped onto the known boundary p = 1. We also define the new dependent variable 
RP, 4 by 

R(e, z )  = *s(e, Z)Z (I + z)+. (2.8) 

In terms of the independent variables p, 8, and z, and the dependent variables $(p, 8, z )  
and R(8, z ) ,  equations (2.4) and (2.5) can be written as 

(2.10) 

where 
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These equations hold for p = 1, 0 < 8 < 27r, and z > 0. The differential equation (2.3) 
then becomes 

o ~ e < 2 m ,  o ~ p < i ,  z a o .  
As a consequence of equations (2.3)-(2.5), we find the integrability condition 

R(B, Z) dB = constant, 
J O 2 %  

which expresses the constant mass flux in the jet. 
Thus, we seek solutions to equations (2.9)-(2.11) for + and R in the region 

O < p < l ,  z > o .  

Once $ and R have been found, and S can be recovered using (2.6) and (2.8). 

(2.11) 

(2.12) 

3. Method of solution 
In this section we shall briefly describe the method we have devised to  solve the 

problem formulated in Q 2.  A detailed discussion and analysis of the method, including 
motivation for the particular formulae used, will be presented elsewhere (see Strik- 
werda & Geer 1981). 

Instead of attempting to solve the differential equation (2.1 1) subject to the auxiliary 
conditions (2.9)-(2.10) and (2.12) (as in a classical approach), we proceed in a different 
manner. To begin, we temporarily think of both $ and R as functions of z and 8, 
defined only on the boundary p = 1. Then, in this context, we may regard equations 
(2.9)-(2.10) as a system of two nonlinear hyperbolic pseudo-differential equations for 
$ and R, with z being the time-like variable and 0 the spatial variable. These equations 
are hyperbolic because the first-order symbol of the linearized system has purely 
imaginary eigenvalues. They are ‘pseudo ’-differential equations because the operator 
a/ap is a non-local operator on @, when considered as defined only on p = 1.  However, 
the ‘auxiliary’ condition (2.11) which holds for p < 1 serves to define a+/ap in terms 
of p% and R on the boundary. Condition (2.12) is then a conservation law of the system. 

The specification of R and $ at  x = 0 are the two initial conditions required by this 
initial-value problem. In all cases considered here $ was initially zero which implies 
that aR/az is zero also, i.e. the jet is locally cylindrical a t  z = 0. 

In  order to obtain a numerical approximation to the solution of our problem 
formulated in this manner, we use a finite difference scheme defined on the grid 
points as follows: 

(3.1) 1 
Si = (i- 1)  A8, i = 1, ..., N ,  

pi = l - - ( j - l ) A p ,  j = 1 ,..., M ,  

z, = nAz, n = 0 , 1 , 2 , 3  ,..., 

where A8 = 2n/(N-  l) ,  Ap = l / ( M -  l), and Az is chosen to  satisfy appropriate 
stability and accuracy criteria. Note that O1 = 0, 8, = 2n, zo = 0, p1 = 1 and pM = 0. 
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We then use the MacCormack scheme (MacCormack 1969) to solve equations (2.9)- 
(2.10). In  particular, if we define the vector w(8, z )  by w = (R, $ ) F ,  then equations 
(2.9)-(2.10) can be written as 

-= aw F(z,w,$,$), 
ax 

where the form of the vector F can be determined from the right-hand sides of (2.9)- 
(2.10). We employ the forward and backward difference operators, D+ and D-, 
respectively, defined by 

(3.3) I D+ W? = (w?+~ - W,")/Ae, 

D- WT = (w? - w,"-l)/AB, 

W? = w(ei, 2,). 

Then the forward-backward MacCormack scheme we use is given by the following 
two-step formula: 

%6;+l = w? + AzF(z,, w?, D+ w?, Dp $?) predictor; (3.4) 

w?+l = +{w? +%Gq+l+ AZF(Z,+~, %?+l, D-i;b?+l, Dp fi+1}  corrector. (3.5) 

Here Dp$T is an approximation to a$/@ on p = 1 at 8 = 8, and z = z,. In  order to 
maintain symmetry, the forward-backward MacCormack scheme is alternated with 
the backward-forward scheme, which uses backward differences in the predictor step 
and forward differences in the corrector step. Also it was found that the conservation 
law (2.12) was satisfied more closely when the quantity /3 in equations (2.9) and (2.10) 
was approximated as 

and this form was used in all the calculations given here. 
The term Dp$? in (3.4) and (3.5) is computed by first solving for an approximation 

to the solution $ of (2.11), with $? specified on the boundary. The approximation is 
given by 

D*W/(Ri + R i d  

A?p, @,-4($i,,-l- h,,) --P,++Wi,, - $i,,+l)I 

- C?~j($i, 5-1 - $i, j+J ('AP)-~+ ($i+ 1,j - '$i, j + $i-l,j) ( A W 2  

- P,W+Wi+l, 1-1 - $i, ,-1- &+I, j+1+ $6 3+11 

+ B?- WiJ-1- h- lJ-1-  $4, ,+1+ $i-l,,+l)} (2APAW1 = 0. 

E* = (D*RT)/(R," + R?*l), 

A," = 1 + ir (E+ + (E- 17, 
c,. = (@+ -@-)/A8. 

(3.6) 

Here, $i,j = $(pj,ei,zn), and 

(3.7) I 
Equations (3.6) are solved by successive over-relaxation. Once $& is determined, the 
term DpyVT is computed &a 

which is a second-order one-sided approximation to a$/ap. 

Dp$? = (3$;1-4$;2+$;3)/2AP9 (3.8) 
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FIGURE 2. Cross-sectional shapes at several values of z for a jet with an 

initial shape of an ellipse. 

Equations (3.1)-(3.8) describe our numerical scheme to solve the problem of 0 2. 
The scheme has been shown to be second-order accurate in both O and z (see Strikwerda 
& Geer 1981 for details). 

4. Examples 
Several examples of thin streams falling vertically through an orifice of a specified 

shape were calculated using the scheme outlined in the previous section. For each 
example the initial conditions were $ = 0 and R(8, z),  i.e. S(8, z) ,  specified at z = 0. 
Note that the condition @ = 0 a t  z = 0 corresponds to a jet that is emanating with 
uniform velocity profile. Thus, in the notation of 8 3, we set @!, = 0 and = RO(8,) 
at z = 0 where RO(O) was specified by one of the following: 

(1) an ellipse, RO = 3(0.25~os~B+sin~O)-~,  where the semi-axes of the ellipse are 
2 and 1 (figure 2); 

(2) a square, Ro = min (sec2 0, cosec2 0), where the length of the side of the square 
is 2 (figure 3); 

(3) a rectangle, Ro = 9 min (sec28,4 cosec2 O), where 2 and 4 are the lengths of the 
sides of the rectangle (figure 4); 

(4) an equilateral triangle, RO = min sec2 (0- 6nZ) where the length of the side 

of the triangle is J3 (figure 5); 
(5) an egg-shape, which consists of a semi-circle of radius 1 joined with continuous 

tangent to a semi-ellipse with semi-minor axis 1 and semi-major axis 2 (figure 6); 
(6) a 'sawed-off' ellipse, which consists of the same ellipse as in example 1, except 

that in the first and third quadrants the ellipse is replaced by a straight line segment 
so that the entire contour is continuous (figure 7). 

For each example, the origin was located at  the centre of mass of the shape, as 
required in the derivation of the basic equations (2.3)-(2.5) (see Geer 1977a). The 
corresponding figures show cross-sections of the jet at several values of z. 

z = o , 1 , 2  
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FIGURE 3. Cross-sectional shapes for a jet with an initial shape of'a square 
with side of length 2. 

2+ FIGURE 4. Cross-sectional -3- shapes for a jet with the initial :+ shape of a 

rectangle with sides of length 2 and 4. 
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FIUURE 6 .  Cross-sectional shapes for a jet with an initial egg-shape formed by a semi-circle 
of unit radius and a semi-ellipse with semi-major axis of length 2. 
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FIQURE 7. Cross-sections at several values of z for a jet with an initial 

cross-sectional shape in the form of B modified ellipse. 

5. Discussion of the results 
The primary purpose of the first example, the ellipse, was to check the accuracy of 

the numerical scheme. The numerical solution was compared with the analytic solution 
presented by Geer ( 1 9 7 7 ~ ) .  The calculation of this analytic solution involved only the 
straightforward numerical integration of nonlinear ordinary differential equations, 
and consequently we assumed that this solution is known exactly. 

Figure 2 shows the cross-sectional shape of the jet at various values of z. At z = 0, 
the ellipse has an aspect ratio of 2 .  As z increased, the shape of the jet became less 
eccentric, was nearly circular at  about z = 4.9, and then assumed an elliptical shape 
with the direction of the major and minor axes exactly interchanged with those of 
the original axes. The cross-sectional shape became more and more elongated a8 z 
increased. At z = 14.0, the numerical solution with N = 101, M = 31, and Az = 0.1 
agreed with the analytic solution to within 1 yo relative error in the la- and 11-norms, 
and to within 2 yo relative error in the maximum norm. 

In all of our examples the computations terminated when the outward moving 
portions became sufficiently elongated so that they could no longer be resolved ade- 
quately by the uniform grid used for the angular co-ordinate. The numerical break-up 
of the solution occurred soon after the last cross-section shown in each case. The 
conservation law (2.12) was satisfied to within 0.5 % relative error in all the cases 
shown here. 

The next three examples had for initial shapes a square (figure 3), arectangle (figure 4, 
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and an equilateral triangle (figure 5 ) .  The initial length of a side of the square was 
2 units, the sides of the rectangle were 4 units and 2 units, and the side of the triangle 
was 4 3  units. (Thus the scale in figure 3 differs from that of the others by a factor of 2.) 
For these examples, for small values of z the cross-sectional shapes decreased in area, 
but maintained essentially the same shape. In particular the discontinuities in the 
slopes at  the corners were propagated for some distance in z. For larger values of z 
the shape became non-convex as those portions of the surface that had been corners 
' buckled-in '. Those portions of the surface that had originally been the sides formed 
the new extremities of the cross-sectional shape. For the case of the square and equi- 
lateral triangle the extremities all extended outward as z increased. For the case of 
the rectangle the major extremities extended outward and the minor extremities 
moved slowly inward. The numerical break-up of these cases occurred along these 
outward moving extremities as noted above. 

We point out that these results are consistent with those of Bidone discussed by 
Rayleigh (1879) '. . . a vein issuing from an orifice in the form of a regular polygon, of 
any number of sides, resolves itself into an equal number of thin sheets, whose planes 
are perpendicular to the sides of the polygon' (see also Rayleigh 1945). Because of 
this qualitative agreement we feel that neglecting surface tension is justified for the 
case when inertial and gravitational forces predominate. 

However, Rayleigh (1879) implies by his sketches that a jet emanating from an 
equilateral triangular orifice assumed at  one point a hexagonal cross-section. Our 
calculations did not produce such a shape and we presume that this discrepancy is 
due to mistaken observations near the point where the cross-section was circular. 

The cases with square and rectangular initial shapes were run with N = 81, M = 31, 
and Az = 0.1. The triangular shape was run with N = 61, M = 31, and Az = 0.1. In  
these examples, the value of N was chosen so that a grid point would be a t  or very near 
the corner of the original shape. 

The two final examples are shown in figures 6 and 7. The previous examples involved 
shapes with several planes of symmetry. These last two examples treat an egg-shape 
with only one plane of symmetry, and a modified elliptical shape, with no plane of 
symmetry. 

The initial egg-shape of the fifth example had a continuous tangent, and the resulting 
jet did not develop any discontinuities. As in the earlier examples, the points on the 
boundary that were initially farthest from the origin moved toward the origin more 
rapidly than other points. The jet had a nearly circular cross-section a t  z = 4.0, and 
then bulged out as it began to form a thin sheet in the direction perpendicular to the 
long direction of the initial shape. Note that the sheet formed on the side that had 
been the long end or elliptical portion of the egg-shape and a more compact mass 
remained near the origin on the side that had been the short end or circular portion 
of the original shape. For this case N = 10 1, M = 3 1, and Az = 0.1. 

The last example, which used the modified elliptical shape for the initial condition, 
kad discontinuities in the tangent (figure 7). These discontinuities were not as large 
as those for the square, rectangle, and triangle, and they seemed to disappear sooner. 
As in the other examples, the portions of the boundary that were initially farthest from 
the origin moved inward most rapidly. The jet was most nearly circular in cross-section 
at  about z = 4. We observe that the outward moving sheets that began to form appeared 
to be moving in the direction perpendicular to the straight sides of the original cross- 
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section. However, the solution has not been integrated far enough in z to determine this 
angle accurately. For this case N = 81, M = 31, and Az = 0.1. 

We note that the two examples which had a continuous tangent in the initial shape, 
i.e. the ellipse and the egg-shape, could be integrated farther in z than the other 
examples (typically to z = 14). Although these two examples did have the largest 
values of N ,  i.e. 101, the examples with a discontinuous tangent could not be integrated 
up to x = 12, even with N = 101. Thus it appears that the discontinuities in the tangent 
cause the jets to produce narrower sheets of fluid more rapidly than would be the case 
with a smooth jet. Of course, since each of these jets had a different mass-flow rate and 
quite dissimilar profiles, it  is difficult to quantify this conclusion. 

These examples illustrate some of the prominent geometric features of jets for 
which inertial and gravitational forces dominate. They also show that the method of 
solution is applicable to a wide variety of jet orifices. 

The first author was partially supported by the Research Foundation of S.U.N.Y. 
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NAS1-14101. The research of the second author wa5 supported under N.A.S.A. 
Contract no. NASl-14101 while he wasin residence a t  ICASE, NASALangley Research 
Center, Hampton, VA 23665. 
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